Home
Class 12
MATHS
[" 2.Let "f:R rarr R" be a positive incr...

[" 2.Let "f:R rarr R" be a positive increasing function with "],[lim_(x rarr oo)(f(3x))/(f(x))=1" .Then,"lim_(x rarr oo)(f(2x))/(f(x))" is equal to "],[[" (a) "1," (b) "(2)/(3)],[" (c) "(3)/(2)," (d) "3]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R to R be a positive increasing function with lim_(x to oo) (f(3x))/(f(x))=1 . Then lim_(x to oo) (f(2x))/(f(x))=

lim_(x rarr oo) (1+f(x))^(1/f(x))

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1. Then lim_(x rarr oo)(f(2x))/(f(x))=(1)(2)/(3)(2)(3)/(2)(3)3(4)1

Let f: R to R be a positive increasing function with Lt_(x to oo)(f(3x))/(f(x))=1 then Lt_(x to oo)(f(2x))/(f(x))=

Let f: R rarr R be a positive increasing function with underset(xrarrinfty)lim(f(3x))/(f(x))=1, then underset(xrarrinfty)lim(f(2x))/(f(x)) =

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

Let f:rarr R rarr(0,oo) be strictly increasing function such that lim_(x rarr oo)(f(7x))/(f(x))=1 .Then, the value of lim_(x rarr oo)[(f(5x))/(f(x))-1] is equal to