Home
Class 8
MATHS
[" IIfoundation & Olymplad Explorer "],[...

[" IIfoundation & Olymplad Explorer "],[" 8.If "a+b+c=0," then "(a^(3)+b^(3)+c^(3))^(2)=]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a + 2b + c= 0 , then show that: a^(3) + 8b^(3) + c^(3)= 6abc

8(a+b)^(3)+27(b+c)^(3)

If a - 2b + 3c= 0 , state the value of a^(3) -8b^(3) + 27c^(3)

If a+b+ 2c=0 , then the value of a^(3) + b^(3) + 8c^(3) is equal to

If abc!=0 and if |(a,b,c),(b,c,a),(c,a,b)|=0 then (a^(3)+b^(3)+c^(3))/(abc)=

[" Let "8" and "C" be two square matrices "],[" such that "BC=CB" and "C^(2)=0" .If "A=],[B+C" then "A^(3)-B^(3)-3B^(2)C" is "],[" (1) "3B],[" (2) "0],[" (3) "B+C],[" (4) "B-C]

If a + 2b = 4c , then prove that a^3+8b^3-64c^3+24abc=0

If the centroid of the triangle formed with (a , b) , (b , c) and (c , a) is O(0 , 0) then a^(3) +b^(3) + c^(3)= .....

If a x^(2)+b x+c=0 and b x^(2)+c x+a=0, a, b, c ne 0 have a common root, then value of ((a^(3)+b^(3)+c^(3))/(a b c))^(2) is