Home
Class 12
MATHS
" If "y=log(sqrt(x)+(1)/(sqrt(x)))," pro...

" If "y=log(sqrt(x)+(1)/(sqrt(x)))," prove that "(dy)/(dx)=((x-1))/(2(x+1)x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y = sqrt(x) + (1)/(sqrt(x)) prove that 2x(dy)/(dx) + y = 2sqrt(x)

If y=log sqrt((1-tan x)/(1+tan x)), prove that (dy)/(dx)=sec2x

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))