Home
Class 11
MATHS
If |z|+2=I(z), then z=(x,y) lies on...

If `|z|+2=I(z)`, then `z=(x,y)` lies on

Promotional Banner

Similar Questions

Explore conceptually related problems

If Re((z-1)/(2z+i))=1, where z=x+iy ,then the point (x,y) lies on a

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

If |z+barz|+|z-barz|=2 , then z lies on

if Im((z+2i)/(z+2))= 0 then z lies on the curve :

if Im((z+2i)/(z+2))= 0 then z lies on the curve :

if |z-i Re(z)|=|z-Im(z)| where i=sqrt(-1) then z lies on

If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors of the quadrants.