Home
Class 10
MATHS
In DeltaABC, AD and BE are altitudes. P...

In `DeltaABC, AD and BE` are altitudes. Prove that `(ar(DeltaDEC))/(ar(DeltaABC))= (DC^2)/(AC^2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In the given figure, Delta ABC and Delta DBC have the same base BC. If AD and BC intersect at O, prove that (ar(DeltaABC))/(ar(Delta DBC))=(AO)/(DO)

In DeltaABC,AD is the bisector of angleA . Then , (ar(DeltaABD))/(ar(DeltaACD))=

In (DeltaABC) , MN||BC and AM:AB=1/3 . Then find the ratio of (ar(DeltaAMN))/(ar(DeltaABC))

In the DeltaABC , MN||BC and AM : : MB = 1/3 . Then, (ar(DeltaAMN))/(ar(DeltaABC)) =?

In DeltaABC , AC > AB and AD is a median. Prove that angleBAD

In DeltaABC , AD and BE are altitudes. If BC=8, AC=12 and AD=6, find ar (ABC) and BE.

In DeltaABC, /_A= 90^(@)" and "AD bot BC . Prove that (1)/(AD^2)=(1)/(AB^2)+(1)/(AC^2) .

ABCD is a trapezium with AB||DC. A line parallel to AC intersects AB at X and BC at Y. Prove that ar( Delta ADX) = ar( Delta ACY).

If DeltaABC~DeltaPQR with (BC)/(QR)=1/3 ,then (ar(DeltaPRQ))/(ar(DeltaBCA)) is equal to

If DeltaABC~DeltaPQR with (BC)/(QR)=1/3 ,then (ar(DeltaPRQ))/(ar(DeltaBCA)) is equal to