Home
Class 11
MATHS
2^(tan(x-(pi)/(4)))-2(0.25)^((sin^(2)(x-...

2^(tan(x-(pi)/(4)))-2(0.25)^((sin^(2)(x-(pi)/(4)))/(cos2x)+1=)

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of roots of the equation 2^(tan(x-pi/4))-2(0. 25)^sin^(3((x-pi/4))/(cos2x))+1=0,i s_______

Statement -1 The value of determinant |{:(sinpi,cos(x+(pi)/(4)),tan(-(pi)/(4))),(sin(x-(pi)/(4)),-cos((pi)/(2)),In((x)/(y))),(cot((pi)/(4)+x),In((y)/(x)),tan(pi)):}| is zero Statement -2 The value of skew -symetric determinat of odd order equals zero.

tan((pi)/(4)+(1)/(2)cos^(-1)x)+tan((pi)/(4)-(1)/(2)cos^(-1)x),x!=0 is equal to

tan((pi)/(4)+(1)/(2)cos^(-1)x)+tan((pi)/(4)-(1)/(2)cos^(-1)x),x!=0 is equal to x( b) 2x( c) (2)/(x) (d) none of these

int_(-(pi)/(4))^((pi)/(4))(2 pi+sin2 pi x)/(2-cos2x)dx

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (1)((pi)/(4),(pi)/(2))(2)(-(pi)/(2),(pi)/(4))(3)(0,(pi)/(2))(4)(-(pi)/(2),(pi)/(2))^(((pi)/(4)),(pi)/(2))^(((pi)/(4)))(2)

If tan((2 pi)/(3)-x)=(sin(2(pi)/(3)-sin2x))/(cos(2(pi)/(3)-cos2x)) where 0

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (-(pi)/(2),(pi)/(4))(b)(0,(pi)/(2))(-(pi)/(2),(pi)/(2))(d)((pi)/(4),(pi)/(2))

If tan((pi)/(4)+(y)/(2))=tan^(3)((pi)/(4)+(x)/(2)) then (3+sin^(2)x)/(1+3sin^(2)x)=