Home
Class 12
MATHS
[" If "adjB=A,|P|=|Q|=1," then "],[adj(Q...

[" If "adjB=A,|P|=|Q|=1," then "],[adj(Q^(-1)BP^(-1))" is "],[" single Choice "(+4,-1)],[OPQ]

Promotional Banner

Similar Questions

Explore conceptually related problems

If adj B=A,|P|=|Q|=1, then adj (Q^(-1)BP^(-1)) is PQ b.QAP c.PAQ d.PA^(1)Q

If adj B=A ,|P|=|Q|=1, then. adj(Q^(-1)B P^(-1)) is a. P Q b. Q A P c. P A Q d. P A^-1Q

If adj B=A ,|P|=|Q|=1, then. adj(Q^(-1)B P^(-1)) is a. P Q b. Q A P c. P A Q d. P A^-1Q

If adj B=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P A Q d. P A^1Q

If adj B=A ,|P|=|Q|=1,t h e na d j(Q^(-1)B P^(-1)) is P Q b. Q A P c. P A Q d. P A^1Q

" If "A,B,P" and "Q" are square matrices of the same order such that "adj B=A,|P|=|Q|=1," then "adj(Q^(-1)BP^(-1))=

If P is a non-singular matrix, with (P^(-1)) in terms of 'P', then show that adj (Q^(-1) BP^-1) = PAQ . Given that (B) = A and abs(P) = abs(Q) = 1.

If P is a non-singular matrix, with (P^-1) in terms of 'P', then show that adj (Q^(-1) BP^-1) = PAQ . Given that adjB = A and abs(P) = abs(Q) = 1.

Evaluate Q ""^(4)P_(1)

If A and B are square matrices of order 3 such that det. (A) = -2 and det.(B)= 1 , then det.(A^(-1)adjB^(-1).adj(2A^(-1)) is equal to