Home
Class 11
MATHS
" 65.Th "y=(e^(x)-e^(-x))/(e^(x)+e^(-x))...

" 65.Th "y=(e^(x)-e^(-x))/(e^(x)+e^(-x))," prove that "(dy)/(dx)=1-y^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y=(e^x-e^(-x))/(e^x+e^(-x)) , prove that (dy)/(dx)=1-y^2

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y = (e^x - e^-x)/(e^x + e^-x) . Prove that dy/dx = 1 - y^2

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If y = (e^(x)-e^(-x))/(e^(x)+e^(-x)) then prove that y = (e^(2x)-1)/(e^(2x)+1) .