Home
Class 12
MATHS
[" (3) "cos[(pi)/(4)-2cos^(-1)3]" - is "...

[" (3) "cos[(pi)/(4)-2cos^(-1)3]" - is "tan4..." is "],[[" (a) "3," (b) "7," (c) "9]]

Promotional Banner

Similar Questions

Explore conceptually related problems

sin ^(2) " (pi)/(6) + cos ^(2) "" (pi)/(3) - tan ^(2) " (pi)/(4) =- 1/2

sin ^(2) " (pi)/(6) + cos ^(2) "" (pi)/(3) - tan ^(2) " (pi)/(4) =- 1/2

tan [(pi) / (4) + (1) / (2) (cos ^ (- 1)) (9) / (6)] + tan [(pi) / (4) - (1) / (2 ) (cos ^ (- 1)) (9) / (6)] =

Prove that (i) " tan"^(2) .(pi)/(3) + 2cos^(2) .(pi)/(4)+ 3 sec^(2).(pi)/(6)+ 4 cos^(2).(pi)/(2)=8 (ii) " sin ".(pi)/(6) " cos 0 + sin ".(pi)/(4) " cos " .(pi)(4) + " sin " .(pi)/(3) "cos " .(pi)/(6) =(7)/(4) (iii) " 4sin " (pi)/(6) " sin"^(2) (pi)/(3) + 3 " cos " .(pi)/(3) " tan ".(pi)/(4) = " cosec"^(2).(pi)/(2)=4

prove that tan ((pi) / (4) + (1) / (2) cos ^ (- 1) ((a) / (b))) + tan ((pi) / (4) - (1) / (2) cos ^ (- 1) ((a) / (b))) = (b) / (a) cos ^ (- 1) ((cos x + cos y) / (1 + cos x cos y) ) = 2tan ^ (- 1) ((tan x) / (2) (tan y) / (2))

prove that tan((pi)/(4)+(1)/(2) cos ^(-1)""(a) /(b) )+tan ((pi)/(4) -(1)/(2) cos ^(-1) ""(a)/(b))=(2b)/(a).

Prove that : tan [(pi)/(4) + (1)/(2) cos^(-1)""(a)/(b)] + tan[(pi)/(4) - (1)/(2) cos^(-1)""(a)/(b)] = (2b)/(a) .

sin ^ (2) ((pi) / (6)) + cos ^ (2) ((pi) / (3)) - tan ^ (2) ((pi) / (4)) = - (1) / (2)

Prove that : "tan"(pi/4 +1/2 "cos"^(-1) a/b) +"tan"(pi/4 -1/2 "cos"^(-1) a/b) =(2b)/a

tan(pi/4+1/2cos^(-1)x)+tan(pi/4-1/2cos^(-1)x),x!=0, is equal to x (b) 2x (c) 2/x (d) none of these