Home
Class 12
MATHS
lim(x rarr-oo)[sqrt(x^(2)-x+1)-ax-b]=0...

lim_(x rarr-oo)[sqrt(x^(2)-x+1)-ax-b]=0

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

lim_(x rarr+oo)x(sqrt(x^(2)+1)-x)

If lim_(x rarr-oo)(sqrt(x^(2)-ax)-x)=(1)/(2) then a=

If lim_(x rarr oo)(sqrt(x^(4)-x^(2)+1)-ax^(2)-b)=0 then there existat least one a and b for which point (a,-4b) lies on the line

find a&b if lim_(x rarr oo)((x^(2)+1)/(x+1)-ax-b)=0

Show that lim_(x rarr oo)(sqrt(x^(2)+x+1)-x)!=lim_(x rarr oo)(sqrt(x^(2)+1)-x)

If a gt 0 and lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0 , then (a,b) lies on the line.

If a gt 0 and lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0 , then (a,b) lies on the line.

lim_(x rarr oo)(x( sqrt(1+x^(2))-x))

lim_(x rarr oo)sqrt(x+1)-sqrt(x)