Home
Class 11
MATHS
If z+sqrt2|z+ 1|+i=0, then z equals...

If `z+sqrt2|z+ 1|+i=0`, then z equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If a complex number z satisfies z + sqrt(2) |z + 1| + i=0 , then |z| is equal to :

If z+ sqrt2 |z+1| +ii=0 then the value of |z|^(2) is

If z=sqrt(2i), then z is equal to

If z+sqrt(2)|z+1|+i=0 , then z= (A) 2+i (B) 2-i (C) -2-i (D) -2+i

If z+sqrt(2)|z+1|+i=0 , then z= (A) 2+i (B) 2-i (C) -2-i (D) -2+i

If z=(i) ^((i) ^(i)) where i= sqrt (−1) ​ , then z is equal to

Statement I : If | z |

If z+sqrt(2)|z+1|+i=0 and z=x+iy then

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these