Home
Class 12
PHYSICS
A particle of mass 4 kg moves along x ax...

A particle of mass 4 kg moves along x axis, potential energy ( U ) varies with respect to x as `U = 20 + ( x-4)^(2)` , maximum speed of paritcle is at

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle of mass 2 kg moves in simple harmonic motion and its potential energy U varies with position x as shown. The period of oscillation of the particle is

A particle of mass 2 kg moves in simple harmonic motion and its potential energy U varies with position x as shown. The period of oscillation of the particle is

A particle of mass 2 kg moves in simple harmonic motion and its potential energy U varies with position x as shown. The period of oscillation of the particle is

A particle of mass = 2kg moves in simple harmonic motion and its potential energy U varies with position x as shown. The period of oscillation of the particle is (npi)/5 second. Find value of n.

A particle of mass = 2kg moves in simple harmonic motion and its potential energy U varies with position x as shown. The period of oscillation of the particle is (npi)/5 second. Find value of n.

A single conservative force F(x) acts on a 1.0-kg particle that moves along the x-axis. The potential energy U(x) is given by U(x)=20+(x-2)^2 where x is in meters. At x=5.0m , the particle has a kinetic energy of 20J . The maximum kinetic energy of the particle and the value of x at which maximum kinetic energy occurs are

The potential energy of a particle oscillating on x-axis is given as U +20 +(x-2)^(2) . The mean position is at

A single conservative force F(x) acts on a 1.0-kg particle that moves along the x-axis. The potential energy U(x) is given by U(x)=20+(x-2)^2 where x is in meters. At x=5.0m , the particle has a kinetic energy of 20J . The maximum and minimum values of x, respectively, are

A particle of mass 2 kg moving along x-axis has potential energy given by, U=16x^(2)-32x ( in joule), where x is in metre. Its speed when passing through x=1 is 2ms^(-1)

A single conservative f_((x)) acts on a m = 1 kg particle moving along the x-axis. The potential energy U_((x)) is given by : U_((x)) = 20 + (x - 2)^(2) where x is in metres. At x = 5 m , a particle has kintetic energy of 20 J The largest value of x will be: