Home
Class 11
MATHS
If A,B,C are angles of a triangle, then ...

If A,B,C are angles of a triangle, then `2sin(A/2)cosec (B/2)sin(C/2)-sinAcot(B/2)-cosA` is (a)independent of A,B,C (b) function of A,B (c)function of C (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B,C are angles of a triangle,then 2sin((A)/(2))cos ec((B)/(2))sin((C)/(2))-sin A cot((B)/(2))-cos A is (a)independent of A,B,C (b) function of A,B(c) function of C(d) none of these

If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC=?

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to

If A B C are the angles of a triangle then sin ^(2) A+sin ^(2) B+sin ^(2) C-2 cos A cos B cos C

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to