Home
Class 12
MATHS
Matrix [[e^t,e^(-t)(sint-2cost),e^(-t)(-...

Matrix `[[e^t,e^(-t)(sint-2cost),e^(-t)(-2sint-cost)],[e^t,-e^(-t)(2sint+cost),e^(-t)(sint-2cost)],[e^t,e^(-t)cost,e^(-t)sint]]` is invertible. (1) only id `t=pi/2` (2) only `y=pi` (3) `t in R` (4) `t !in R`

Promotional Banner

Similar Questions

Explore conceptually related problems

Matrix =[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost),e^-t(sint-2cost)],[e^t,e^tcost,e^-tsint]] is invertible. (a) only if t=(pi)/(2) (b) only t=pi (c) tepsilonR (d) t!inR

Matrix =[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost),e^-t(sint-2cost)],[e^t,e^tcost,e^-tsint]] is invertible. (a) only if t=(pi)/(2) (b) only t=pi (c) tepsilonR (d) t!inR

Matrix =[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost),e^-t(sint-2cost)],[e^t,e^tcost,e^-tsint]] is invertible. (a) only if t=(pi)/(2) (b) only y=pi (c) tepsilonR (d) t!inR

int e^(t)(cost-sin t)dt

Find dy/dx , when : x=e^(t)(sint+cost)andy=e^(t)(sint-cost) .

A = [{:(e^(t), e^(-t)"cos"t, e^(-t)"sin"t),(e^(t)-e^(-t), "cos"t-e^(-t)"sin"t, -e^(-t)"sin"t + e^(-t)"cos"t),(e^(t), 2e^(-t)"sin"t, -2e^(-t)"cos"t):}]"then A is"

int e^t sint dt

If x=ae^(t)(sint+cost) and y=ae^(t)(sint-cost) , then prove that (dy)/(dx)=(x+y)/(x-y) .

x=3cost-2cos^(3)t,y=3sint-2sin^(3)t

If x=a e^t(sint+cost) and y=a e^t(sint-cost), prove that (dy)/(dx)=(x+y)/(x-y)dot