Home
Class 12
MATHS
यदि त्रिभुज ABC समबाहु हो तथा सदिश vec...

यदि त्रिभुज ABC समबाहु हो तथा सदिश `vec(AB)` एवं `vec(BC)` एकक सदिश हो तो `|vec(AB) + vec(BC)|` का मान ज्ञात कीजिए |

Promotional Banner

Similar Questions

Explore conceptually related problems

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If ABCDEF is a regular hexagon with vec(AB) = vec(a) ,vec(BC ) = vec(b) then vec(CE) equals :

In a triangle ABC, if taken in order, consider the following statements 1. vec(AB) + vec(BC) + vec(CA) = vec(0) 2 vec(AB) + vec(BC) - vec(CA) = vec(0) 3. vec(AB)- vec(BC) + vec(CA) = vec(0) 4. vec(BA)- vec(BC) + vec(CA) = vec(0) How many of the above statements are correct?

ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b) , then what vec(BD) equal to ?

If A, B, C and D are the vertices of a square, find vec(AB) + vec(BC)+ vec(CD) + vec(DA) .

If ABCDEF is a regular hexagon with vec(AB) = veca and vec(BC)= vecb, then vec(CE) equals

The value of vec(AB)+vec(BC)+vec(DA)+vec(CD) is

In triangle ABC, find vec(AB)+vec(BC)+vec(CA)