Home
Class 11
MATHS
" 3.If in a triangle "ABC,a^(4)+b^(4)+c^...

" 3.If in a triangle "ABC,a^(4)+b^(4)+c^(4)=2c^(2)(a^(2)+b^(2))," prove that "C=45^(@)" or "135^(@)

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^4 + b^4 + c^4 = 2c^2 (a^2 + b^2), prove that angle ACB = 45^@ or 135^@ .

(i) If in a triangle ABC, a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0 , then show that, C=45^(@) or 135^(@) . (ii) In in a triangle ABC, sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , show that, one of the angles of the triangle is 30^(@) or 150^(@)

In a Delta ABC, a ^(4)+b^(4) + c^(4) = 2b^(2)c^(2)+2a^(2)b^(2), " then B"=

If a^4+b^4+c^4=2c^2(a^2+b^2) in a /_\ABC ,prove that C= 45^@ or 135^@

If, in Delta ABC, a^(4) + b^(4) + c^(4) = 2a^(2)(b^(2) + c^(2)) then : m/_A = ...

In an acute angled Delta ABC , if a^(4) + b^(4) +c^(4) = 2c^(2) (a^(2) + b^(2)) then the angle C is

If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2c^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-

If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2x^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-

In triangle ABC if a^(4) + b^(4) + c^(4) = 2a^(2)b^(2) + 2b^(2)c^(2) then the values of B will be-