Home
Class 12
MATHS
[" (1) "cos[tan^(-1){,sin(cot^(-1)x)}],[...

[" (1) "cos[tan^(-1){,sin(cot^(-1)x)}],[,=(sqrt(1+x^(2)))/(sqrt(2+x^(2)))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos[tan^(-1). {sin (cot^(-1)x)}]=sqrt((1+x^(2))/(2+x^(2))) .

Prove the following: cos{tan^(-1){sin(cot^(-1)x)}}=sqrt((1+x^(2))/(2+x^(2)))

Prove that cos[Tan^(-1){sin(Cot^(-1)x)}] = sqrt((x^(2)+1)/(x^(2)+2))

Prove the following: "cos"{tan^(-1){sin(cot^(-1)x)}}= sqrt((1+x^2)/(2+x^2))

Prove that: sin[cot^(-1){cos(tan^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))cos[tan^(^^)(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))

Assertion: sin(cot^(-1)(1/2))=tan(cos^(-1)x) then the value of x=(sqrt(5))/3 Reason R: cos(tan^(-1)(sin(cot^(-1)x)))=sqrt(((1+x^(2))/(2+x^(2))))

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2)) cos"[tan^(-1){"sin"(cot^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))