Home
Class 12
MATHS
[" Let "z(1),z(2),z(3)" be three distinc...

[" Let "z_(1),z_(2),z_(3)" be three distinct points "|z|=1" .If "theta_(1),theta_(2)" and "theta_(3)" be the arguments of "z_(1)z_(2),z_(2)],[" respectively then "cos(theta_(1)-theta_(2))+cos(theta_(2)-theta_(1))+cos(theta_(3)-theta_(1))],[[" (A) ">=-(3)/(2)," (B) "<=-(3)/(2)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1),z_(2) and z_(3) be three points on |z|=1 . If theta_(1), theta_(2) and theta_(3) be the arguments of z_(1),z_(2),z_(3) respectively, then cos(theta_(1)-theta_(2))+cos(theta_(2)-theta_(3))+cos(theta_(3)-theta_(1))

Let z_(1),z_(2) and z_(3) be three points on |z|=1 . If theta_(1), theta_(2) and theta_(3) be the arguments of z_(1),z_(2),z_(3) respectively, then cos(theta_(1)-theta_(2))+cos(theta_(2)-theta_(3))+cos(theta_(3)-theta_(1))

Let z_1,z_2,z_3 be three points on absz=1 let theta_1,theta_2 and theta_3 be the argument of z_1,z_2,z_3 then cos(theta_1-theta_2)+cos(theta_2-theta_3)+cos(theta_3-theta_2)

if cos theta_(1) + cos theta_(2) + cos theta_(3)= sin theta_(1) + sin theta_(2) + sin theta_(3)= 0 , then the value of cos (theta_(1) + theta_(2)) + cos (theta_(2) + theta_(3)) + cos (theta_(3) + theta_(1)) is

If sin theta_(1)+sin theta_(2)+sin theta_(3)=3 then cos theta_(1)+cos theta_(2)+cos theta_(3)=

z_(1)bar(z)_(2)+bar(z)_(1)z_(2)=2|z_(1)||z_(2)|cos(theta_(1)-theta_(2))

z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

If Cos theta_(1) + Cos theta_(2) + Cos theta_(3) = 3 then Sin theta_(1) + Sin theta_(2) + Sin theta_(3) =

If Sin theta_(1) + Sin theta_(2) + Sin theta_(3) = 3 then Cos theta_(1) + Cos theta_(2) + Cos theta_(3) =

z_3^2/(z_1.z_2)= (A) sec^2.cos2theta (B) costheta.sec^22theta (C) cos^2theta.sec2theta (D) sectheta.sec^22theta