Home
Class 12
MATHS
" Prove that "cos^(2)theta+sin^(2)theta ...

" Prove that "cos^(2)theta+sin^(2)theta cos2 beta=cos^(2)beta+sin^(2)beta cos2 theta

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^2 theta + sin^2 theta cos 2 beta = cos^2 beta + sin^2 beta cos 2theta

If sin^(-1)x=theta+beta andsin ^(-1)y=theta-beta, then 1+xy is equal to sin^(2)theta+sin^(2)beta(b)sin^(2)theta+cos^(2)beta cos^(2)theta+cos^(2)theta(d)cos^(2)theta+sin^(2)beta

Prove that: cos2 alpha cos2 beta+sin^(2)(alpha-beta)-sin^(2)(alpha+beta)=cos2(alpha+beta)

If sin^(-1)x=theta+betaa n dsin^(-1)y=theta-beta, then 1+x y is equal to sin^2theta+sin^2beta (b) sin^2theta+cos^2beta cos^2theta+cos^2theta (d) cos^2theta+sin^2beta

If sin^(-1)x=theta+betaa n dsin^(-1)y=theta-beta, then 1+x y is equal to sin^2theta+sin^2beta (b) sin^2theta+cos^2beta cos^2theta+cos^2theta (d) cos^2theta+sin^2beta

If alpha and beta are the solution of the equation a cos2 theta+b sin2 theta=c then cos^(2)alpha+cos^(2)beta is equal to

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

If alpha + beta + gamma = 2 theta , prove that cos theta + cos(theta- alpha) + cos(theta- beta) + cos(theta -gamma) = 4(cos (alpha/2) cos (beta/2) cos (gamma/2))

Prove that 2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=cos2 alpha

It is given that cos(theta-alpha)=a, cos(theta-beta)=b What is sin^(2)(alpha-beta)+2abcos(alpha-beta) equal to ?