Home
Class 12
MATHS
int(0)^(1)x tan^(-1)xdx=...

int_(0)^(1)x tan^(-1)xdx=

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

Evaluate the following integral: int_(0)^(1)tan^(-1)xdx

I=int_(0)^(1)tan^(-1)xdx

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x-x^(2))dx is equal to

int_(0)^(1)x sin^(-1)xdx

I : int_(0)^(pi//2)(2tan""(x)/(2)+xsec^(2)""(x)/(2))dx=pi II : int_(0)^(1)xTan^(-1).xdx=(pi)/(4)-(1)/(2)

int_(0)^(1)tan^(-1)xdx

int_(0)^(1)(tan^(-1)xdx)/((1+x^(2))^((3)/(2)))