Home
Class 14
MATHS
[" If "f(x)+f(y)=f((x+y)/(1-xy))" for al...

[" If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R,(xy!=1)," and "],[lim_(x rarr0)(f(x))/(x)=2" then find "f((1)/(sqrt(3)))" and "f'(1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

f(x)+f(y)=f((x+y)/(1-xy)) ,for all x,yinR . (xy!=1) ,and lim_(x->0) f(x)/x=2 .Find f(1/sqrt3) and f'(1) .

f(x)+f(y)=f((x+y)/(1-xy)) ,for all x,yinR . (xy!=1) ,and lim_(x->0) f(x)/x=2 .Find f(1/sqrt3) and f'(1) .

If f(x)+f(y)=f((x+y)/(1-xy))x>y in R,xy!=1,lim_(x rarr0)(f(x))/(x)=2. Find f(5),f'(-2)

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

Let f(x+y)=f(x)+f(y)+x^2y+y^2x and lim_(x rarr 0)(f(x))/x=1 . Find f'(3) .