Home
Class 11
MATHS
" There exists a positive real number "x...

" There exists a positive real number "x" satisfying "cos(tan^(-1)x)=x." The value of "cos^(-1)((x^(2))/(2))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

There exists a positive real number x satisfying cos(tan^(-1)x)=x . Then the value of "cos"^(-1)((x^(2))/2) is

There exists a positive real number x satisfying cos(tan^(-1)x)=x . Then the value of cos^(-1)(x^(2)/2) is

There exists a positive real number of x satisfying cos(tan^(-1)x)=x. Then the value of cos^(-1)((x^(2))/(2)) is (pi)/(10) (b) (pi)/(5) (c) (2 pi)/(5) (d) (4 pi)/(5)

There exists a positive real number x satisfying cos ( tan^(-1)x) = x . The number value of cos^(-1) (x^(2)/2) is

There exists a positive real number of x satisfying "cos"(tan^(-1)x)=xdot Then the value of cos^(-1)((x^2)/2)i s

There exists a positive real number of x satisfying "cos"(tan^(-1)x)=xdot Then the value of cos^(-1)((x^2)/2)i s

There exists a positive real number x ratisfing cos(tan^(-1))=x the value of (cos^(-1)x^(2))/(2) is

There exists a positive real number of x satisfying "cos"(tan^(-1)x)=xdot Then the value of cos^(-1)((x^2)/2)i s pi/(10) (b) pi/5 (c) (2pi)/5 (d) (4pi)/5

There exists a positive real number of x satisfying "cos"(tan^(-1)x)=xdot Then the value of cos^(-1)((x^2)/2)i s pi/(10) (b) pi/5 (c) (2pi)/5 (d) (4pi)/5