Home
Class 12
MATHS
Let a,b in (0,pi/2], If f(a,b) = sin^6a ...

Let `a,b in (0,pi/2]`, If `f(a,b) = sin^6a + 3 sin^2a cos^2b + cos^6b`. For how many different values of `b/a` does f(a,b) assumes the value 1 ?

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^6A+cos^6A+3sin^2A cos^2A=\ a. 0 b. 1 c. 2 d. 3

If sin A +sin B =2, then the value of cos (A+B) is-

If sin x+sin y=a and cos x-cos y=b Then f ind value of (1)/(2)(2-a^(2)-b^(2))

Let sin a+sin b==(sqrt(2))/(2) and cos a+cos b=(sqrt(6))/(2) Then the value of 4sin^(2)(a+b) is less than

If sin (3A-B) = 1 and cos (2A - B) = (sqrt(3))/(2) , then the value of sin A and cos B are .

If f(x)=(sin2x+A sin x+B cos x)/(x^(3)) is continuous at x=0, the value of A,B and f(0) are :

If 2 cos(A + B) = 2 sin(A - B) = 1 , find the values of A and B.

If sin (A - B) = 1/2 and cos (A + B) = 1/2 where A > B > 0 and A + B is an acute angle, then the value B is

sin^(6)A+cos^(6)A+3sin^(2)A cos^(2)A=0 b.1c2d.3

let f(x)=(ae^(|sin x|)-b cos x-|x|)/(x^(2)) if f(x) is continuous at x=0 then find the values of a and b