Home
Class 11
MATHS
[cot(A)/(2)+cot(B)/(2)][a sin^(2)(B)/(2)...

[cot(A)/(2)+cot(B)/(2)][a sin^(2)(B)/(2)+b sin^(2)(A)/(2)]=c cot(C)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC,("cot"(A)/(2)+"cot"(B)/(2))(a "sin"^(2)(B)/(2)+b "sin"^(2)(A)/(2))=

In Delta ABC, (cot. (A)/(2) + cot. (B)/(2)) (a sin.^(2) (B)/(2) + b sin.^(2) (A)/(2))=

In Delta ABC, (cot. (A)/(2) + cot. (B)/(2)) (a sin.^(2) (B)/(2) + b sin.^(2) (A)/(2))=

cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=

In a triangle ABC if cot((A)/(2))*cot((B)/(2))=c,cot((B)/(2))*cot((C)/(2))=a and cot((C)/(2))*cot((A)/(2))=b then (1)/(s-a)+(1)/(s-b)+(1)/(s-c)=

In A B C ,(cot (A/2)+cot(B/2))(asin^2(B/2)+bsin^2(A/2))= (a) cotC (b) c cotC (c) cot(C/2) (d) c cot(C/2)

In A B C ,(cot (A/2)+cot(B/2))(asin^2(B/2)+bsin^2(A/2))= (a) cotC (b) c cotC (c) cot(C/2) (d) c cot(C/2)

In a DeltaABC , if cot.(A)/(2)cot.(B)/(2)=c , cot.(B)/(2)cot.(C )/(2)=a and cot.(C)/(2)cot.(A)/(2)=b , then (1)/(s-a)+(1)/(s-b)+(1)/(s-c) equals

r("cot"(A)/(2)"cot"(B)/(2)"cot"(C)/(2))=

r^(2) cot ""(A)/(2) cot ""(B)/(2) cot ""(C)/(2)