Home
Class 11
MATHS
(1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)+..."...

(1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)+..." to "n" terms "

Promotional Banner

Similar Questions

Explore conceptually related problems

FInd the sum of infinite terms of the series (1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)....

(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+... to n terms

Find the sum of the series 1/(1.2.3.4)+1/(2.3.4.5)+1/(3.4.5.6)+....... upto n terms.

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.2.3)+ (1)/(2.3.4)+ (1)/(3.4.5)+....+ (1)/(n(n+1)(n+2))= (n(n+3))/(4(n+1)(n+2))

1/(1.2)+1/(2.3)+1/(3.4)+... to n terms

If the sum of n term of the series (5)/(1.2.3) + (6)/(2.3.4) + ( 7)/(3.4.5)+"…." is a/2 - (n+b)/((n+1)(n+2)) , then

If the sum of n term of the series (5)/(1.2.3) + (6)/(2.3.4) + ( 7)/(3.4.5)+"…." is a/2 - (n+b)/((n+1)(n+2)) , then

Sum of n terms of (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …. is

1+(1+2)/(2)+(1+2+3)/(3) +(1+2+3+4)/(4)+.. . to n terms =

Find the sum to n terms of the series , (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+.... ?