Home
Class 12
MATHS
int(x^(4)+x^(2)+1)/(x^(2)+1)dx=...

int(x^(4)+x^(2)+1)/(x^(2)+1)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate :int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx

int(x^(4)+x^(2)+1)/(x^(2)+x+1)dx

int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx

Evaluate: int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx

Evaluate int (x^(4) + x^(2) + 1)/(x^(2) - x + 1 ) dx

If the integral int(x^(4)+x^(2)+1)/(x^(2)-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

int(x^(4)+x^(2)+1)/(x^(2)+x+1)dx=Ax^(3)+Bx^(2)+Cx+D then A+B+C+D is equal to

int(x^(4)+1-x^(2))/(x^(6)+1)dx=

int e^(x)((x^(4)+x^(2)+1)/(x^(2)+x+1))dx=