Home
Class 12
MATHS
Let vec u be a vector coplanar with the ...

Let `vec u` be a vector coplanar with the vectors `vec a = 2 hat i + 3 hat j - hat k` and `vec b= hat j+hatk` If `vec u` is perpendicular to `vec a` and `vec u.vecb=24` then `|vecu|^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec u be a vector coplanar with the vectors vec a=2hat i+3hat j-hat k and vec b=hat j+hat k If vec u is perpendicular to vec a and vec u.vec b=24 then |vec u|^(2) is equal to

let vec a=hat i+hat j-hat k and vec b=hat i-hat j-hat k and vec c be a unit vector perpendicular to vec a and coplanarwith vec a and vec b then vec c is

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

Let a vector vec(a) be coplanar with vectors vec(b) = 2hat(i) + hat(j) + hat(k) and vec(c) = hat(i) - hat(j) + hat(k) . If vec(a) is perpendicular to vec(d) = 3hat(i) + 2hat(j) + 6hat(k) , and |vec(a)| = sqrt(10) . Then a possible value of [[vec(a),vec(b),vec(c)]] + [[vec(a), vec(b), vec(d)]] + [[vec(a),vec(c),vec(d)]] is equal to :

Let vec a = hat i + 2 hat j and vec b = 2 hat i + hat j . Is |vec a| = |vec b| ? Are the vectors vec a and vec b equal?

If vec a is any vector, show that vec a = (vec a. hat i ) hat i + (vec a. hat j) hat j + (vec a. hat k) hat k .

If vec a=hat i+hat j+hat k and vec b=hat j-hat k, find a vector vec c such that vec a x vec c=vec b and vec a*vec c=3

Let vec a = hat i + 2 hat j and vec b = 2 hat i + hat j . Is |veca| = |vec b| .Are the vectors vec a and vec b equal ?