Home
Class 14
MATHS
" b) "(SECX+TANX)/(SECX-TANX)...

" b) "(SECX+TANX)/(SECX-TANX)

Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(tanx)(sinx-secx)dx , is equal to a) e^(tanx)*cosx+C b) e^(tanx)*sinx+C c) -e^(tanx)*cosx+C d) e^(tanx)*secx+C

If A={:[(secx,tanx),(tanx,secx)]:}" and "A(adj*A)=k{:[(1,0),(0,1)]:}," then :"k=

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K ) (A) -1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (B) 1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (C) -1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K (D) 1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot (a) -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K (b) 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K (c) -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K (d) 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

Find the differentiation of ((secx+tanx)/(secx-tanx)) w.r.t. \ x

int((secx+ "cosec x")(secx- "cosec x"))/(tanx +cotx)dx=

Derivative of y=sqrt((1-sinx)/(1+sinx)) is a)secx b)secx(tanx-Secx) c)tanx d)-tanx

(d)/(dx)((secx+tanx)/(secx-tanx))=

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.