Home
Class 14
MATHS
" If "sin^(-1)x+sin^(-1)y=(pi)/(2)" then...

" If "sin^(-1)x+sin^(-1)y=(pi)/(2)" then "(dy)/(dx)" is equal to: "

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y=(pi)/(2) , then the value of (dy)/(dx) is -

If sin^(2) x + cos^(2) y = 1 , " then " (dy)/(dx) is equal to

If y = sin^(-1) ((2x)/(1 + x^(2))), "then" (dy)/(dx) is equal to

If y=sin^(-1)x+sin^(-1).sqrt(1-x^(2)) what is (dy)/(dx) equal to ?

If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

If y = sin^(-1) sqrt(1-x) , then (dy)/(dx) is equal to

If y = sin^(2) cot^(-1) sqrt((1+x)/(1-x)) , then (dy)/(dx) is equal to a)2 sin 2x b)sin 2x c) (1)/(2) d) -(1)/(2)

If y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)) , what is (dy)/(dx) equal to?

If x -y = Sin ^(-1) x - Sin ^(-1) y then (dy)/(dx) =

If y=sin(2sin^(-1)x) then (dy)/(dx)=