Home
Class 12
MATHS
lim(x to 1//2) (8x^(3) - 1)/(16 x^(4) - ...

`lim_(x to 1//2) (8x^(3) - 1)/(16 x^(4) - 1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0)((1+x)^(8)-1)/((1+x)^(2)-1) is equal to

lim_(x to -1) (x^(8)+x^(4)-2)/(x-5)

lim_(x to -1) (x^(8)+x^(4)-2)/(x-5)

lim_(x to2)((x^(3)-8)/(x^(4)-16))=

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to:

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to:

lim_(x to (1)/(2))lim (4x^(2)+8x-5)/(1-4x^(2))=

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)