Home
Class 14
MATHS
" 22"tan^(-1)[(sqrt(1+x^(2)-1))/(x)]" ar...

" 22"tan^(-1)[(sqrt(1+x^(2)-1))/(x)]" ari "tan^(-1)x^((1)/(2))" and "x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

tan[(sqrt(1+x^(2))-1)/x] =

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

If tan^(-1)(sqrt(1+x^(2))-1)/x=4^(0) , then

If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

Differentiate tan^(-1)((sqrt(1+x^(2))+1)/(x))" w.r.t. "tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2))) at x = 0.