Home
Class 12
MATHS
" (23.) If "y=e^(a cos^(-1)x),-1<=x<=1,"...

" (23.) If "y=e^(a cos^(-1)x),-1<=x<=1," show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(m cos^(-1)x) , then (1-x^(2))y_(2)-xy_(1)-m^(2)y is equal to

If y=e^(m cos^(-1)x) , then (1-x^(2))y_(2)-xy_(1)-m^(2)y is equal to

If y = e^(m cos^(-1) x) (1-x^2)y_2-xy_1 = m^2y

If y=e^(a cos^-1x), -1lexle1 show that: (1 - x^2) y_2 - xy_1-a^2y = 0

if y=e^(a cos^-1x),-1lexle1 , show that dy/dx= (-ae^(acos^-1x))/(sqrt(1-x^2))

If y= e^(sin^(-1)x) and z=e^(-cos^(-1)x) , prove that the value of (dy)/(dz) independent of x.

If y=e^("sin"^(-1)x)andz=e^(-"cos"^(-1)x) , prove that dy/(dz)=e^(pi//2) .

If y=e^(sin^(-1)x)+e^(cos^(-1)x),0ltxlt1 , then

"If "y=logsqrt((1+cos^(2)x)/(1-e^(2x)))", show that "(dy)/(dx)=(e^(2x))/(1-e^(2x))-(sinxcosx)/((1+cos^(2)x)).

If y =e ^( m Cos ^(-1)x) then show that (1- x^(2)) y _(2) - xy_(1) -m^(2) y =0.