Home
Class 11
MATHS
[" 11.If "t(0),t(1),t(2),..................

[" 11.If "t_(0),t_(1),t_(2),...............t_(n)" are the consecutive "],[" terms in the expansion "(x+a)^(n)" then "],[(t_(0)-t_(2)+t_(4)-t_(6)+....)^(2)+(t_(1)-t_(3)+t_(5)....)^(2)=],[[" 1) "x^(2)+a^(2)," 2) "(x^(2)+a^(2))^(n)],[" 3) "x^(2)-a^(2)," 4) "(x^(2)-a^(2))^(n)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If T_(0),T_(1),T_(2),...,T_(n) represent the terms in the expansion of (x+a)^(n), then find the value of (T_(0)-T_(2)+T_(4)-...)^(2)+(T_(1)-T_(3)+T_(5)-...)^(2)n in N

If t_0,t_1, t_2,...,t_n are the terms in the expansion of (x+a)^n then prove that (t_0-t_2+t_4-...)^2+(t_1-t_3+t_5-...)^2=(x^2+a^2)^n .

If T_0,T_1, T_2,.....T_n represent the terms in the expansion of (x+a)^n , then find the value of (T_0-T_2+T_4-....)^2+(T_1-T_3+T_5-.....)^2n in Ndot

If T_0, T_1, T_2, … T_n represent the terms in the expansion of (x+a)^n , then the value of (T_0-T_2+T_4-T_6+…)^2+(T_1-T_3 +T_5-….)^2 is

If T_0,T_1, T_2, ,T_n represent the terms in the expansion of (x+a)^n , then find the value of (T_0-T_2+T_4-)^2+(T_1-T_3+T_5-)^2n in Ndot

If T_0,T_1, T_2, ,T_n represent the terms in the expansion of (x+a)^n , then find the value of (T_0-T_2+T_4-)^2+(T_1-T_3+T_5-)^2n in Ndot