Home
Class 11
MATHS
[" 30.Let "S(n)=1+q+q^(2)+...+q^(n)" and...

[" 30.Let "S_(n)=1+q+q^(2)+...+q^(n)" and "],[T_(n)=1+((q+1)/(2))+((q+1)/(2))^(2)+...+((q+1)/(2))^(n)],[" where "q" is a real number and "q!=1." If "],[101C_(1)+^(101)C_(2)*S_(1)+...+^(101)C_(101)*S_(100)=alpha T_(100)],[" then "alpha" is equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S_(n)=1+q+q^(2)+?+q^(n) and T_(n)=1+((q+1)/(2))+((q+1)/(2))^(2)+?+((q+1)/(2)) If alpha T_(100)=^(101)C_(1)+^(101)C_(2)xS_(1)+^(101)C_(101)xS_(100), then the value of alpha is equal to (A) 2^(99)(B)2^(101)(C)2^(100) (D) -2^(100)

Given,s_(n)=1+q+q^(2)+....+q^(n),S_(n)=1+(q+1)/(2)+((q+1)/(2))^(2)+...+((q+1)/(2))^(n),q!=1 prove that ^(n+1)C_(1)+^(n+1)C_(2)s_(1)+^(n+1)C_(3)s_(2)+......+^(n+1)C_(n+1)s_(n)=2^(n)S_(n)

Given s=1+q+q^(2)+...+q^(n),S_(n)=1+(q+(1)/(2))+(q+(1)/(2))^(2)+......+(q+(1)/(2))^(n) then prove that ^(n+1)C_(1)+^(n+1)C_(2)s_(1)+......,+^(n+1)C_(n+1)s_(n)=2^(n)s_(n)

Let S_n=1+q+q^2 +...+q^n and T_n =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n If alpha T_100=^101C_1 +^101C_2 x S_1 ...+^101C_101 x S_100, then the value of alpha is equal to (A) 2^99 (B) 2^101 (C) 2^100 (D) -2^100

Let S_k=1+q+q^2+...+q^k and T_k=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^k q!=1 then prove that sum_(r=1)^(n+1) ^(n+1)C_rS_(r-1)=2^ nT_n

lim_(n rarr0){(p^((1)/(n))+q^((1)/(n)))/(2)}^(n),p,q>0

Let S_n=1+q+q^2 +...+q^n and T_n =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n If alpha T_100=^101C_1 +^101C_2 x S_1 ...+^101C_101 x S_100, then the value of alpha is

{(P+1/(q))^(m).(p-(1)/(q))^(n)}/{(q+(1)/(p))^(m).(q-(1)/(p))^(n)}

Let S_(k)=1+2+3+....+k and Q_(n)=(S_(2))/(S_(2)-1)*(S_(3))/(S_(3)-1)...(S_(n))/(S_(n)-1) where k,nvarepsilon N*lim_(x rarr oo)Q_(n)=

If P = (101)^(100) and Q = (100)^(101) , then the correct relation is: