Home
Class 12
MATHS
cot^-1{sqrt(1+sinx)+sqrt(1-sinx)}/{sqrt(...

`cot^-1{sqrt(1+sinx)+sqrt(1-sinx)}/{sqrt(1+sinx)-sqrt(1-sinx)}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : cot^-1{frac{sqrt(1+sinx)+sqrt(1-sinx)}{sqrt(1+sinx)-sqrt(1-sinx)}}=x/2

Differentiate tan^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))} , 0 < x < pi

Differentiate w.r.t. 'x' tan^-1{(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))}, 0

Write the simplest form : cot^(-1) [(sqrt(1+sinx)+sqrt(1-sin x))/(sqrt(1+sinx)-sqrt(1-sin x)]], x epsilon [0, pi/4]

if x in(o,pi/2) ,show that cot^-1(frac(sqrt(1+sinx)+sqrt(1-sinx))(sqrt(1+sinx)-sqrt(1-sinx)))=x/2

If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))," then "(dy)/(dx)=

If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))," then "(dy)/(dx)=

The value of tan^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} is : ((pi)/(2) lt x lt pi)

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).