Similar Questions
Explore conceptually related problems
Recommended Questions
- S=1^(3)+2^(3)+3^(3)+cdots+n^(3)=[(n(n+1))/(2)]^(2)
Text Solution
|
- f(n)=(1^(2)n+2^(2)(n-1)+3^(2)(n-2)+...+n^(21))/(1^(3)+2^(3)+3^(3)+.......
Text Solution
|
- S(n)=(1)/(1^(3))+(1+2)/(1^(3)+2^(3))+(1+2+3)/(1^(3)+2^(3)+3^(3))+........
Text Solution
|
- Prove that 1*2+2*3+3*4+.....+n*(n+1)=(n(n+1)(n+2))/(3)
Text Solution
|
- 1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N
Text Solution
|
- 1^(3)+2^(3)+3^(3)+…..+n^(3)=(1)/(4)n^(2)(n+1)^(2)
Text Solution
|
- If 1*1!+2*2!+3*3!+ . . .+n*n ! =(n+1)!-1 then show that, 1*1!+2*2!+3*3...
Text Solution
|
- A) |lim(n rarr oo)((n^((1)/(2)))/(n^((3)/(2)))+(n^((1)/(2)))/((n+3)^((...
Text Solution
|
- Lt(n rarr oo)((1^(2)+1)/(n^(3))+(2^(2)+2)/(n^(3))+(3^(2)+3)/(n^(3))+.....
Text Solution
|