Home
Class 12
MATHS
[" 37.Let "f:R rarr R" be a function suc...

[" 37.Let "f:R rarr R" be a function such that "f(2-x)=f(2+],[" and "f(4-x)=f(4+x)," for all "x in R" and "int_(0)^(2)f(x)dx=5],[" Then the value of "int_(10)^(50)f(x)dx" is : "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function such that f(2-x)=f(2+x) and f(4-x)=f(4+x), for all x in R and int_(0)^(2)f(x)dx=5. Then the value of int_(10)^(50)f(x)dx is

let f: R to R be a function such that f(2-x)= f(2+x) and f(4-x)=f(4+x) , for all x in R and int_(0)^(2)f(x)dx=5 . Then the value of int_(10)^(50) f(x) dx is

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function for which int_0^2 f(x)dx=5 , then int_0^(50)f(x)dx is equal to

If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function for which int_0^2 f(x)dx=5 , then int_0^(50)f(x)dx is equal to

If f(2-x)=f(2+x),f(4+x)=f(4-x) and int_(0)^(2)f(x)dx=5 then int_(0)^(50)f(x)dx is

Let f:R rarr R be a twice differentiable function such that f(x+pi)=f(x) and f'(x)+f(x)>=0 for all x in R. show that f(x)>=0 for all x in R .

Let f:R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for all x,y,in R if int_(0)^(2)f(x)dx=alpha, then int_(-2)^(2)f(x)dx is equal to