Home
Class 12
MATHS
Use the formula lim(x to 0) (a^(x) - 1...

Use the formula ` lim_(x to 0) (a^(x) - 1) / x log_(e) a`, to find ` lim_(x to 0) (2^(x)-1)/((1+x)^(1//2) - 1) `.

Promotional Banner

Similar Questions

Explore conceptually related problems

Use the formula Lim_(xto 0) (a^(x)-1)/x = log_(e)a " to find " Lim_(xto0) (2^(x)-1)/((1+x)^(1//2)-1)

Use formula lim_(x rarr0)(a^(x)-1)/(x)=log(a) to find lim_(x rarr0)(2^(x)-1)/((1+x)^((1)/(2))-1)

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)