Home
Class 10
MATHS
" If "sin theta+cos theta=p" and "sec th...

" If "sin theta+cos theta=p" and "sec theta+csc theta=q," then prove that "q(p^(2)-1)=2p

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta + cos theta = p and sec theta + "cosec"theta = q , then prove that q(p^(2)-1) = 2p .

If sintheta+costheta=pandsectheta+"cosec"theta=q then prove that q(p^(2)-1)=2p .

If sintheta+costheta=pandsectheta+"cosec"theta=q then prove that q(p^(2)-1)=2p .

If sin theta+ cos theta = p and sec theta + cosec theta = q ; show that q(p^2-1) = 2p

If sin theta+cos theta=p and sec theta+cos ec theta=q show that q(p^(2)-1)=2p

If sin theta+cos theta=p and sec theta+csc theta=q show that q(p^(2)-1)=2p

If cos theta + sin theta = p and sec theta + cosec theta = q , prove that q (p^(2) - 1) = 2p .

If sin theta+cos theta=p and sec theta+cos ec theta=q find q(p^(2)-1)=

If p and q are the lengths of perpendicular from the origin to the lines x cos theta-y sin theta=k cos 2theta and x sec theta+y "cosec" theta=k respectively, prove that p^(2)+4q^(2)=k^(2) .

If sin theta + cos theta = and sin^(3) theta + cos^(3)theta = q, then p(p^(2) - 3) =