Home
Class 11
MATHS
[" If the line "x=y=z" intersect the lin...

[" If the line "x=y=z" intersect the line "sin Ax+sin By+sin Cz=],[z=d^(2)" then "sin(A)/(2)sin(B)/(2)sin(C)/(2)" is equal to (where "A+B+C=pi)],[[" (A) "(1)/(16)," (B) "(1)/(8)],[" (A) "1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line x=y=z intersect the line sin Ax+sin By+sin Cz=2d^(2),sin2Ax+sin2By+sin2Cz=d^(2) then sin((A)/(2))sin((B)/(2))sin((C)/(2)) is equal to (where A+B+C=pi)

If the line x=y=z intersect the line sin A.x+sin B*y+sin C.z=2d^(2),sin2A*x+sin2B*y+sin2C*z=d^(2) then find the value of sin(A)/(2).sin(B)/(2).sin(C)/(2) where A,B,C are the angles of a triangle.

If A+B+C=pi , prove that: "sin" A+"sin" B-"sin" C=4 "sin"(A)/(2)"sin"(B)/(2)"cos"(C)/(2) .

Show that: sin A + sin B +sin C - sin(A+B+C)=4 sin ((A+B)/2)sin ((B+C)/2)sin ((C+A)/2)

(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C)) is equal to

(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C)) is equal to

(sin2A + sin2B + sin2C) / (sin A + sin B + sin C) = 8sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

If A+B+C=pi , then sin2A+sin2B-sin2C is equal to

(sin(A-C)+2sinA+sin(A+C))/(sin(B-C)+2sinB+sin(B+C)) is equal to-