Home
Class 12
MATHS
An extremum value of y=int0^x(t-1)(t-2)d...

An extremum value of `y=int_0^x(t-1)(t-2)dt` is : `5/6` (b) `2/3` (c) 1 (d) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=int_0^1(e^t)/(t+1)dt , then the value of (int_0^1t e^t^2)/(t^2+1)dt A^2 (b) 1/2A (c) 2A (d) 1/2A^2

The point of extremum of f(x)=int_(0)^(x)(t-2)^(2)(t-1)dt is a

The value of int_0^x (t - abst)^2/(1 + t^2) dt is equal to

If y=int_(0)^(x)(t-1)(t-2)^(2)dt , find x for which (dy)/(dx)=0 .

Find the value of ln(int_(0)^(1)e^(t^(2)+t)(2t^(2)+t+1)dt)

Find the value of ln(int_(0)^(1) e^(t^(2)+t)(2t^(2)+t+1)dt)

Let A=int_(0)^(1)(e^(t))/(t+1)dt, then the value of (int_(0)^(1)te^(t^^2))/(t^(2)+1)dtA^(2)(b)(1)/(2)A(c)2A(d)(1)/(2)A^(2)

int_(0)^(1)t^(5)*sqrt(1-t^(2))*dt

If int_(0)^(1)(e^(t))/(1+t)dt=a, then find the value of int_(0)^(1)(e^(t))/((1+t)^(2))dt in terms of a