Home
Class 12
MATHS
[" The complex "z" satisfies "|2z+10+10i...

[" The complex "z" satisfies "|2z+10+10i|<=5sqrt(3)-5," then the least principal argument of "z" is "],[[" (1) "(-5 pi)/(6)," (2) "(-11 pi)/(12)," (3) "(-3 pi)/(4)," (4) "(-2 pi)/(3)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a complex number z satisfies |2z+10+10i|<=5sqrt(3)-5, then the least principal argument of z is :(a)-(5 pi)/(6) (b) (11 pi)/(12)( c) -(3 pi)/(4)(d)-(2 pi)/(3)

If a complex number z satisfies |2z+10+10 i|lt=5sqrt(3)-5, then the least principal argument of z is

If a complex number z satisfies |2z+10+10 i|lt=5sqrt(3)-5, then the least principal argument of z is

If a complex number z satisfies |2z+10+10 i|lt=3sqrt(3)-5, then the least principal argument of z is a. -(5pi)/6 b. -(11pi)/(12) c. -(3pi)/4 d. -(2pi)/3

The complex number z satisfies z+|z|=2+8i. find the value of |z|-8

The complex number z satisfies z+|z|=2+8i . find the value of |z|-8

The complex number z satisfies z+|z|=2+8i . find the value of |z|-8

The complex number z satisfies z+|z|=2+8i . find the value of |z|-8

In the Argand Diagram , all the complex numbers z satisfying |z - 4i| + |z+ 4i| = 10 lie on a