Home
Class 11
MATHS
lim(n rarr oo)(4^(n)+5^(n))^((1)/(n))" i...

lim_(n rarr oo)(4^(n)+5^(n))^((1)/(n))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)(3^(n)+5^(n)+7^(n))^(1/n) is equal to

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

The value of lim_(n to oo) [(n!)/(n^(n))]^((1)/(n)) is equal to -

lim_ (n rarr oo) (1) / ((n) ^ ((1) / (n))) is equal to

lim_(n rarr oo)((-1)^(n)n)/(n+1)

lim_ (n rarr oo) (6 ^ (n) + 5 ^ (n)) ^ ((1) / (n)) is equal to

lim_(n rarr oo) ((4^(1/n)-1)/(3^(1/n)-1)) is equal to

lim_(n rarr oo) ((4^(1/n)-1)/(3^(1/n)-1)) is equal to

lim_ (n rarr oo) ((root (3) (n!)) / (n)) is equal to