Home
Class 14
MATHS
[" 10.Let "S(k)=(1+2+3+...+k)/(k)],[" If...

[" 10.Let "S_(k)=(1+2+3+...+k)/(k)],[" If "S_(1)^(2)+S_(2)^(2)+...+S_(10)^(2)=(5)/(12)A," then "A" is equal to : "],[[" (1) "303," (2) "283," (3) "156," (4) "301]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(k)=(1+2+...+k)/(k), find the value of S_(1)^(2)+S_(2)^(2)+...+S_(n)^(2)

If S_k=(1+2+3+...k)/k then find the value of S_1^2+S_2^2+....S_n^2

Given S_(n)=sum_(k=1)^(n)(k)/((2n-2k+1)(2n-k+1)) and T_(n)=sum_(k=1)^(n)(1)/(k) then (T_(n))/(S_(n)) is equal to

Let" "S_(k)=( (1 ,k), (0 ,1) ), k in N .Then (S_(2))^(n)(S_(x))^(-1) (where n in N) is equal to: (S_(k))^(-1) denotes the inverse of matrix S_(k)

Let S _(K) = sum _(r=1) ^(k) tan ^(-1) (( 6 ^r)/( 2 ^( 2 r + 1) + 3 ^( 2r +1))) . Then lim _( k to oo) S _(k) is equal to :

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

Let U_(n)=sum_(k=1)^(n)(n)/(n^(2)+k^(2)),S_(n)=sum_(k=0)^(n-1)(n)/(n^(2)+k^(2)) then