Home
Class 10
MATHS
" (35) If we "A=(17)/(8)," show that "(3...

" (35) If we "A=(17)/(8)," show that "(3-4sin^(2)A)/(4cos^(2)A-3)=(3-tan^(2)A)/(1-3tan^(2)A)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sec A=(17)/(8), verify that (3-4sin^(2)A)/(4cos^(2)A-3)=(3-tan^(2)A)/(1-3tan^(2)A)

If secA=(17)/8 , verify that (3-4sin^2A)/(4cos^2A-3)=(3-tan^2A)/(1-3tan^2A)

If sec A=(5)/(4), verify that (3sin A-4sin^(3)A)/(4cos^(3)A-3cos A)=(3tan A-tan^(3)A)/(1-3tan^(2)A)

If costheta=(8)/(17) ,verify that (3-4sin^(2)theta)/(4cos^(2)theta-3)=(3-tan^(2)theta)/(1-3tan^(2)theta) .

If costheta=(8)/(17) ,verify that (3-4sin^(2)theta)/(4cos^(2)theta-3)=(3-tan^(2)theta)/(1-3tan^(2)theta) .

If secA=5/4 , verify that (3sinA-4sin^3A)/(4cos^3A-3cosA)=(3tanA-tan^3A)/(1-3tan^2A)

(tan4A+tan2A)(1-tan^(2)3A tan^(2)A)=2tan3A sec^(2)A

Show that cos(2Tan^(-1).(1)/(7))=sin(2Tan^(-1).(3)/(4))

Show that: cos(2tan^(-1)((1)/(7)))=sin(4tan^(-1)((1)/(3)))

If tan A=(1)/(7) and tan B=(1)/(3), show that cos2A=sin4B