Home
Class 12
MATHS
[" Eciven that: "cos(x)/(2)cos(x)/(4)cos...

[" Eciven that: "cos(x)/(2)cos(x)/(4)cos(x)/(8)...=(sin x)/(x)],[(1)/(2^(2))sec^(2)(x)/(2)+(1)/(2^(4))sec^(2)(x)/(4)+...=csc^(2)x-(1)/(x)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_(x to 0){"cos"((x)/(2))cos((x)/(4))cos((x)/(8))....cos((x)/(2^(n)))}=

8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=

intcos.(x)/(16)cos.(x)/(8)cos.(x)/(4)cos.(x)/(2)sin.(x)/(16)dx=

intcos.(x)/(16)cos.(x)/(8)cos.(x)/(4)cos.(x)/(2)sin.(x)/(16)dx=

8.sin(x/8). cos (x/2).cos (x/4).cos (x/8) =

cos x cos((x)/(2))-cos3x cos((9x)/(2))=sin7x sin8x

8sin(x/8)cos(x/2)cos(x/4)cos(x/8) is equal to

prove that cos x cos2x cos4x cos8x=(sin16x)/(16sin x)

8sin.x/8.cos.x/2.cos.x/4.cos.x/8=

cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)