Home
Class 11
MATHS
^nC(r)+^(n-1)C(r-1)+^(n-1)C(r-2)=^(n+1)C...

^nC_(r)+^(n-1)C_(r-1)+^(n-1)C_(r-2)=^(n+1)C_(r)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that .^(n)C_(r)+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_(r) .

Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)

Show that , (.^(n)C_(r)+^(n)C_(r-1))/(.^(n)C_(r-1)+^(n)C_(r-2))=(.^(n+1)p_(r))/(r.^(n+1)p_(r-1))

Show that ^nC_r+2. ^nC_(r-1)+ ^nC_(r-2)= ^(n+2)C_r

the roots of the equations |{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n-1)C_(r-1)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n)C_(r-1)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+1)C_(r-1)):}|=0

the roots of the equations |{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n-1)C_(r-1)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n)C_(r-1)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+1)C_(r-1)):}|=0

Prove that ""^(n-2)C_r+2* ""^(n-2)C_(r-1)+ ""^(n-2)C_(r-2)=""^nC_r

Prove that (r+1)^(n)C_(r)-r^(n)C_(r)+(r-1)^(n)C_(2)-^(n)C_(3)+...+(-1)^(r)n_(C_(r))=(-1)^(r_(n-2))C_(r)