Home
Class 12
MATHS
If P=[(x,0, 0),( 0,y,0 ),(0, 0,z)] and ...

If `P=[(x,0, 0),( 0,y,0 ),(0, 0,z)]` and `Q=[(a,0 ,0 ),(0,b,0 ),(0, 0,c)]` , prove that `P Q=[(x a,0 ,0 ),(0,y b,0),( 0 ,0,z c)]=Q P`

Promotional Banner

Similar Questions

Explore conceptually related problems

If P=[{:(x,0,0),(0,y,0),(0,0,z):}] and Q=[{:(a,0,0),(0,b,0),(0,0 ,c):}] then prove that PQ=[{:(xa,0,0),(0,yb,0),(0,0,zc):}]=QP .

If P = [(x,0,0),(0,y,0),(0,0,z)]and Q = [(a,0,0),(0,b,0),(0,0,c)] , verify that PQ = QP = [(xa, 0,0),(0,yb,0),(0,0,zc)]

If P=[{:(x,0,0),(0,y,0),(0,0,z):}]andQ=[{:(a,0,0),(0,b,0),(0,0,c):}] , prove that PQ=[{:(xa,0,0),(0,yb,0),(0,0,zc):}]=QP .

|(a,p,q),(0,b,r),(0,0,c)|

Choose the correct answer in questions 17 to 19: If x, y, z are nonzero real numbers then the inverse of metrix A=[{:(x,0,0),(0,y,0),(0,0,z):}] is : (a) [{:(x^(-1),0,0),(0,y^(1),0),(0,0,z^(1)):}] (b) xyz[{:(x^(-1),0,0),(0,y^(1),0),(0,0,z^(1)):}] ( c) 1/(xyz)[{:(x,0,0),(0,y,0),(0,0,z):}] (d) 1/(xyz)[{:(1,0,0),(0,1,0),(0,0,1):}]

If x ,\ y ,\ z are non-zero real numbers, then the inverse of the matrix A=[[x,0, 0],[ 0,y,0],[ 0, 0,z]] , is (a) [[x^(-1),0 ,0 ],[0,y^(-1),0],[ 0, 0,z^(-1)]] (b) x y z[[x^(-1),0 ,0],[ 0,y^(-1),0],[ 0, 0,z^(-1)]] (c) 1/(x y z)[[x,0, 0],[ 0,y,0],[ 0, 0,z]] (d) 1/(x y z)[[1, 0, 0],[ 0 ,1, 0],[ 0, 0, 1]]

Point P(p ,0),Q(q ,0),R(0, p),S(0,q) from.

Point P(p ,0),Q(q ,0),R(0, p),S(0,q) from.

If x, y, z are non-zero real numbers, then the inverse of matrix A=[(x,0, 0) ,(0,y,0),( 0, 0,z)] is (A) [[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (B) xyz[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (C) (1)/(xyz)[[x,0,0],[0,y,0],[0,0,z]] (D) (1)/(xyz)[[1,0,0],[0,1,0],[0,0,1]]

If x, y, z are non-zero real numbers, then the inverse of matrix A=[(x,0, 0) ,(0,y,0),( 0, 0,z)] is (A) [[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (B) xyz[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (C) (1)/(xyz)[[x,0,0],[0,y,0],[0,0,z]]] (D) (1)/(xyz)[[1,0,0],[0,1,0],[0,0,1]]