Home
Class 12
MATHS
" Where "x^(p)y^(p)=(x+y)^(p+q)" prove t...

" Where "x^(p)y^(p)=(x+y)^(p+q)" prove that "(dy)/(dx)=(y)/(x)" (ii) "(d^(2)y)/(dx^(2))=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(p)y^(q)=(x+y)^(p+q) , prove that (dy)/(dx)=(y)/(x)

If x^(p)y^(q)=(x+y)^(p+q) , then prove that (dy)/(dx)=(y)/(x) .

x^(p)*y^(q) = (x+y)^(p+q) prove that dy/dx= y/x

IF [x^p y^q = (x+ y)^(p+q)] , prove that dy/dx = y/x.

If x^(p)y^(q)=(x+y)^(p+q) , show that dy/dx=y/x .

If x^p y^q= (x+y)^(p+q) , then prove that dy/dx = y/x

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^p . y^q = (x + y)^(p + q) , show that (dy)/(dx) = y/x