Home
Class 12
MATHS
y=e^(2x)(a+bx)...

y=e^(2x)(a+bx)

Promotional Banner

Similar Questions

Explore conceptually related problems

The differential equation for y=e^(x)(a+bx) is

Form differential equation for y=e^(x)(a+bx+x^(2)) A) y_(2)-2y_(1)+y=2e^(x) B) y_(2)+2y_(1)-y=2e^(x) C) y_(2)-2y_(1)-y=2e^(x) D) y_(1)-2y_(2)+y=2e^(x)

If y=e^(ax)cos bx , Then find [(d^(2)y)/(dx^(2))]_(x=0)

If int x^(2)e^(-2x)=e^(-2x)(ax^(2)+bx+c)+d then

If int x^(2)e^(-2x)dx=e^(-2x)(ax^(2)+bx+c)+D

If int x^(2)e^(-2x)dx=e^(-2x)(ax^(2)+bx+c)+d ,then-

If int x^2e^(-2x)= e^(-2x)(ax^2+bx+c)+d then

If y=e^(ax)sin bx, then prove that y_(2)-2ay_(1)+(a^(2)+b^(2))y=0

y=e^(ax)sin bx : Prove that y_2-2ay_1+(a^2+b^2)y=0 .

Find derivative of y=e^(ax)cos bx